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Parametric resonance has been proposed in reference [1] as a model for transition from
planar to whirling vibrations of bars and beams with loose supports (such as underwater
piles, heat exchanger tubes with gaps in support plates etc.). A single-mass t.d.o.f. system is
considered, with motion of mass being described by its Cartesian co-ordinates X(t) and
>(t). The system is at equilibrium in the origin X"0, >"0, and its springs provide
a radially oriented restoring force F, its components in the X and > directions being F(X)

and F(>/r), respectively, where r"JX2#>2. The equations of motion are written as

mXG #F (r)(1#k)(X/r)"0, m>G #F (r)(>/r)"m1(t), (1, 2)

where k is a (small) parameter of asymmetry of the restoring force, or detuning parameter
between natural frequencies of small oscillations in the X and > directions. In case of
a linear restoring force, where F(r)"Kr, equations (1) and (2) are seen to be uncoupled, so
that solution to equation (1), in case of zero initial conditions (ICs), is just X,0. This is the
case of a planar motion >(t), excited by the external force 1(t) and/or by non-zero initial
conditions for > (t).

If, however, the restoring force F (r) contains a hardening non-linearity, coupling between
equations (1) and (2) appears. The one-dimensional motion X"0, >"r may then become
unstable in X, as long as the directly excited periodic motion>(t), as governed by equation
(2) with r">, appears in equation (1) as a parametric excitation. The phenomenon
resembles somewhat the classical autoparametric resonance [2], but with an important
di!erence: the parametric instability is provided in the present case by higher harmonics
only of >(t), and as shown above, the e!ect does not exist for a linear F(r).

Instability of the planar motion has been studied in reference [1] for the case of
periodic-in-time >(t), both for free (undamped) case with non-zero ICs for > and for the
case of forced oscillations, with 1(t)"K sinut in equation (2). Equation (1), linearized in the
vicinity of the equilibrium state X"0, is reduced then to the Mathieu equation for each of
the harmonics of >(t). The analytical solution has been obtained "rst by Krylov}
Bogoliubov (KB) averaging [3], for the conservative case with a small cubic non-linearity in
the F (r). It has shown the system to be exactly at the stability boundary in the important
special case of a perfect axial symmetry (k"0). It was decided then to obtain a benchmark
exact solution for such a &&doubtful'' case by using the following speci"c form for the
restoring force,

F(r)"(mX2/k)(tan kr/cos2 kr), (3)

where k is an arbitrary parameter of non-linearity, and X is clearly seen to be the natural
frequency of small (linear) oscillations in the > direction: if X"0, D> D"r, then
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F(r)PmX2r when krP0. The next, or two-term power series approximation for F (r) in kr
yields a cubic non-linearity. As for the other extreme of large-amplitude displacements, it
can be seen that the motion is con"ned within an ellipse with axes R"n/2 and
R"(1#k) (n/2), R"1/k. Therefore, the model should be adequate to describe rattling
motions within loose support of circular or slightly non-circular shape.

Equation (2) with zero RHS and expression (3) for F(r), with r">, has an exact solution
for >(t), as discovered originally in reference [4]. Expanding this solution into Fourier
series and combining it with the available data on stability boundaries for the Mathieu
equation [5] resulted in boundaries of the instability domain in the plane A, k, where A is
the response amplitude in >(t), as governed by the initial conditions [1]. One of the
branches of the boundary was found to be a tangent to the axis k"0 at the origin. This
result clearly correlates with the approximate one as obtained (for small A's) by the KB
averaging. And the most important conclusion of the exact solution is the fact, that with
increasing A the instability domain moves away eventually from the ordinate axis, i.e., the
perfectly symmetric system belongs to the interior of the stability domain rather than to its
boundary. The possible implication of this result is the necessary to exceed a certain
threshold level of the external excitation if the latter is the source of vibrations in the
> direction rather than the initial displacement and/or velocity.

This expectation had been con"rmed in reference [1] by an approximate analytical
solution, by KB-averaging, for the case of the sinusoidal-in-time excitation in the
> direction (with the non-zero RHS in equation (2)) for a perfectly symmetric system
(k"0). The same conclusion has been attained through a direct numerical integration of
equation (2) and linearized equation (1). The &&transmitted Ince}Strutt chart'' has been
calculated, i.e., stability chart for equilibrium in the X direction, in terms of the amplitude
and frequency of excitation in the > direction.

In this note, the case of zero-mean white-noise random excitation 1 (t) with intensity D in
the > direction is considered, this kind of excitation being typical for the above-mentioned
potential applications. The basic goal is to "nd the threshold intensity of excitation, which
corresponds to excitation of vibration in the (normal) X direction. The results may be of
importance for design, since dynamic instability of the equilibrium state X"0 implies
two-dimensional motion of the whirling type indeed. This can be seen from numerical
integration data [1] for the full system (1) and (2) with zero RHS for a certain (asymmetric)
case of instability; violent tangential motions are involved in this whirling, which may lead
to a greatly increased wear in the loose support. The analytical study is very di$cult, as long
as in the case of a lightly damped system, with similar damping ratios in two directions, the
parametric random excitation> (t), as applied to system (1), is narrow-band even in case of
a broadband external excitation, with bandwidth being of the same order as that of system
(1). Thus, a direct Monte-Carlo simulation is used, for the case of a perfect axial symmetry
(k"0). Viscous damping terms are also added to the basic equations, so that a stationary
response >(t) may exist.

Introducing non-dimensional variables x"kX"X/R, y"k>">/R, equations (1) and
(2) (with r:> as the linearization condition and with viscous damping terms added) may
be reduced, respectively, to

xK#2bxR #g (y(q))x"0, g (y)"f (y)/y, f (y)"X2(tan y/cos2 y), (4)

yK#2ayR #f (y)"k1 (t). (5)

The procedure for establishing a stability threshold for system (1) and (2) was essentially as
follows. Numerical integration of the equations with computer-generated white noise 1(t)
was performed with zero ICs within time interval ¹ with the duration being about 5000



TABLE 1

¹hreshold excitation intensity for instability of planar response

a/X 0)01 0)03 0)05 0)1
p
*

0)4 0)75 0)962 1)4
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cycles of y(t) for each simulation run (more precisely, ¹"30 000 s for X"1 s~1). The
intensity D of the white-noise excitation was increased stepwise for each subsequent run
with given a/X, b/X until a rather large value of x (¹ ) was attained, with extremely small
values of x (¹) being observed for all smaller D's. The stepwise increase in D corresponded to

resolution 0)01 in a non-dimensional parameter p
*
"Jk2D/4aX2 of the threshold

excitation intensity. (This parameter is seen to be the r.m.s. value of a non-dimensional
displacement >/R of the corresponding linear system). There were no ambiguities in
discriminating between values of x (¹ ) within and outside of the stability domain (with
di!erences being about several orders of magnitudes), so that this procedure resulted in
a sample stochastic stability boundary indeed.

The resulting values of p
*

as obtained for several di!erent damping ratios a/X and b"a
are presented in Table 1 (it seems that damping should typically be the same for X and
> directions in axially symmetric systems). A very strong in#uence of damping on the
stability threshold can be seen, which usually is typical for stochastic stability. In the present
case the in#uence is twofold: "rstly, increasing damping reduces the response in the
> direction, thereby reducing the level of parametric excitation, and secondly, it provides
a stabilizing e!ect for the X direction.
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